Fractional Odd-Dimensional Mechanics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional quantum mechanics

A path integral approach to quantum physics has been developed. Fractional path integrals over the paths of the Levy flights are defined. It is shown that if the fractality of the Brownian trajectories leads to standard quantum and statistical mechanics, then the fractality of the Levy paths leads to fractional quantum mechanics and fractional statistical mechanics. The fractional quantum and s...

متن کامل

Fractional statistical mechanics.

The Liouville and first Bogoliubov hierarchy equations with derivatives of noninteger order are derived. The fractional Liouville equation is obtained from the conservation of probability to find a system in a fractional volume element. This equation is used to obtain Bogoliubov hierarchy and fractional kinetic equations with fractional derivatives. Statistical mechanics of fractional generaliz...

متن کامل

Odd Dimensional Symplectic Manifolds

In this thesis, we introduce the odd dimensional symplectic manifolds. In the first half we study the Hodge theory on the basic symplectic manifolds. We can define two cohomology theories on them, the standard basic de Rham cohomology gheory and a basic version of the Koszul-Brylinski-Mathieu 'harmonic' symplectic cohomology theory. Among our main results are a collection of examples for which ...

متن کامل

Fractional coloring and the odd Hadwiger's conjecture

Gerards and Seymour (see [T.R. Jensen, B. Toft, Graph Coloring Problems, Wiley-Interscience, 1995], page 115) conjectured that if a graph has no odd complete minor of order p, then it is (p − 1)-colorable. This is an analogue of the well known conjecture of Hadwiger, and in fact, this would immediately imply Hadwiger’s conjecture. The current best known bound for the chromatic number of graphs ...

متن کامل

Extended Fractional Supersymmetric Quantum Mechanics

Recently, we presented a new class of quantum-mechanical Hamiltonians which can be written as the F th power of a conserved charge: H = Q with F = 2, 3, ... . This construction, called fractional supersymmetric quantum mechanics, was realized in terms of a paragrassmann variable θ of order F , which satisfies θ = 0. Here, we present an alternative realization of such an algebra in which the int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2011

ISSN: 1687-1839,1687-1847

DOI: 10.1155/2011/526472